Step 1 - Additional Libs
import seaborn as sns # high level interface for drawing attractive statistical graphics (based on matplotlib)
import matplotlib.pyplot as plt # 2D ploting of graphs
Step 2 - Add data set and copy the link
Step 3 –
df=pd.read_csv("../input/students-performance-in-exams/exams.csv") # defining the path for reading the data set
df.head() # reading 1st 5 data sets from the file
Step 4 –
df.tail(10) # reading 1st 10 data sets from the file
Step 5 –
df.describe() # will get mean, max, min with counts
Step 6 –
df.info() # to get count and data types details
Step 7 -
df.dtypes # data types details
Step 8 –
df["gender"].value_counts() # gives the counts from column
df["lunch"].value_counts() # gives the counts from column
Step 9 –
df_rank = df.groupby(['writing score'])
df_rank.mean()
Step 10 –
sns.distplot(df["reading score"]) # The distplot represents the univariate distribution of data i.e. data distribution of a variable against the density distribution
Step 11 -
df["gender"].value_counts().plot(kind="bar")
Step 12 -
df["parental level of education"].value_counts().plot(kind="pie",title="Parental education level")
Step 13 –
sns.pairplot(df,hue="gender")